# Il percorso diagnostico del Trauma Maggiore:

# stratificazione del rischio per intensita' clinico-assistenziale



Osvaldo Chiara, SC Chirurgia Generale - Trauma Team - DEA-EAS, Ospedale Niguarda Ca'Granda

Parma, 23 gennaio 2013

First level diagnostic work-up: -Clinical (primary, secondary) -laboratory (ALT, AMY, LACTATE, urine) -extended FAST -chest xray -pelvis xray



#### AIM:

 identification of lifetreathening injuries in unstable patients
 Identification of stable or stabilized patients who need second level studies Second level diagnostic work-up:

-xray of extremities -ceMDCT + spine -angiography -NMR



#### AIM:

 Stadiation of injuries in stable or stabilized patients
 Resolution of special problems



Background.....

ATLS 8° edition: Initial assessment: primary, ultrasound, chest and pelvis xray secondary, blood lab.

identification of life-treathening injuries in unstable patients
 Identification of stable patients who need second level studies

Whole body multislice computed tomography as the first line diagnostic tool in patients with multiple injuries Wurmb TE, et al: J Trauma 2009, 66: 658 Kanz KG, et al: Unfallchirurg 2004, 107:937

Exadactylos AK, et al: J Trauma 2001, 51: 1173

| 1. Increased accuracy (cl<br>2. Reduced time to OR |                                    | ER tests<br>+MDCT | AB +<br>eFAST +<br>MDCT | р     |
|----------------------------------------------------|------------------------------------|-------------------|-------------------------|-------|
|                                                    | Time to full<br>diagnosis<br>(min) | 41±27             | 12±9                    | 0.001 |
|                                                    | Ready to<br>OR (min)               | 58±21             | 29±4                    | 0.025 |
|                                                    | Mortality                          | 0.16              | 0.17                    | n.s.  |

## Airway – Breathing – E-Fast – body MDCTscan



# Whole-body multislice computed tomography as the primary and sole diagnostic tool in patients with blunt trauma: searching for its appropriate indication

American Journal of Emergency Medicine (2007) 25, 1057-1062

#### Thomas Erik Wurmb MD<sup>a,\*</sup>, Peter Frühwald MD<sup>D</sup>, Wittiko Hopfner Cand Med<sup>c</sup>, Norbert Roewer MD<sup>a</sup>, Jörg Brederlau MD<sup>a</sup>

| Table 1         Multiple trauma triage scheme                                                                                                                           |                                                                                                                |                                                                                             |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|
| Category I, mechanism of trauma                                                                                                                                         | Category II, vital signs                                                                                       | Category III, clinical apparent injuries                                                    |  |  |
| Falls >5 m<br>Traffic accident<br>1. High-speed crash<br>2 Conductive track<br>3 Au<br>1 patients with: (1) high e<br>1 altered vital signs, (3) a<br>3 whole body MDCT | Blood pressure <80 mm Hg<br>Respiratory rate <10; others, >29<br>nergy mechanism of t<br>natomy of severe inju | Flail chest<br>Open chest wound<br>rauma, (2)<br>ry, all received                           |  |  |
| 5. Death in same passenger compartment<br>Explosion, buried person                                                                                                      | Intubated patient with an initial GCS <9 on scene                                                              | Unstable pelvis<br>≥2 Proximal long-bone fractures<br>Amputation proximal to wrist or ankle |  |  |
| Overtriage 30% !!!                                                                                                                                                      |                                                                                                                |                                                                                             |  |  |

| 25 000                        |                                     |                          |                                    |
|-------------------------------|-------------------------------------|--------------------------|------------------------------------|
| Hiroshima/Nagasa<br>survivors | Type of<br>exam<br>(single<br>scan) | Effective<br>Dose<br>mSv | Equivalent<br>n° of chest<br>x-ray |
|                               | CT brain<br>+<br>Cspine             | 8.2                      | 400                                |
|                               | CT<br>chest                         | 8                        | 400                                |
| 40 msv<br>(5-150)             | CT<br>abd                           | 10                       | 500                                |
|                               | CT<br>pelvis                        | 10<br>Richards P,        | <b>500</b><br>Injury 2007, 39:347  |

**PPV 0.95** 

## Pre-hospital triage criteria (200 consecutive pts)

| Physiologic<br>data     | # pts          | ISS≤15 | ISS>15 | PPV  |
|-------------------------|----------------|--------|--------|------|
| GCS<14                  | 82<br>(67,21%) | 5      | 77     | 0,94 |
| PAS<90 mmHg             | 23<br>(18,85%) | 0      | 23     | 1,00 |
| FR<10 o >29<br>atti/min | 17<br>(13,94%) | 0      | 17     | 1,00 |

Chiara O, et al

| Data                                    | # pts | ISS≤15 | ISS>15 | PPV  |      |
|-----------------------------------------|-------|--------|--------|------|------|
| Ejection                                | 10    | 3      | 7      | 0,70 |      |
| speed>60 km/h                           | 32    | 13     | 19     | 0,59 |      |
| Deformity>50 cm                         | 18    | 9      | 9      | 0,50 | 0.76 |
| Intrusion >30 cm                        | 4     | 0      | 4      | 1,00 |      |
| Rollover                                | 11    | 4      | 7      | 0,64 |      |
| Death in the same<br>compartment        | 6     | 0      | 6      | 1,00 |      |
| Injury car-ped/bicycle>10<br>km/h       | 31    | 4      | 27     | 0,87 |      |
| Pedestrian thrown or rollover           | 27    | 6      | 21     | 0,78 |      |
| Motorcycle injury speed>40<br>km/h      | 34    | 3      | 31     | 0,91 |      |
| Motorcycle driver thrown or<br>rollover | 17    | 4      | 13     | 0,76 |      |
| fall>6 mt                               | 29    | 4      | 25     | 0,86 |      |
| Crash imjury                            | 8     | 1      | 7      | 0.87 |      |
| Estrication time >20 min                | 18    | 6      | 12     | 0,67 |      |

## TRAUMA ADMISSIONS NIGUARDA2003 - 2009

overtriage



Objective: to assess whether the ER triage rule was able to identify patients with torso injuries and thereby justifying whole body MDCT



Trauma patients admitted from january 1 to december 31, , to an urban level one trauma center with pre-hospital triage criteria of high energy mechanism, but stable ABCD and no anatomy of severe injury, have been included



#### **CRITERIA FOR SECOND LEVEL WORK-UP**

- ->2 rib fractures or bilateral or 1-2 rib
- -Scapula, spine, pelvis
- -Pulmonary contusion/hypoxia/hypercapnia
- -Pneumo-hemothorax
- -Mediastinal shape, diaphragm
- -Emphysema (mediastinum, subcutaneous)
- -High energy, suspected BCI (EKG, TnI)
- -Penetrating wound of torso
- -Positive extended FAST
- -Positive blood tests
- -Blood in urine
- -Positive phisical exam

#### AIMS

Ability of ER tests to identify patients positive for torso injuries at body contrast CTscan has been evaluated. Organ specific CTscan (head, spine) was not considered

Sensitivity, specificity, accuracy, PPV, NPV have been calculated. Abscence of torso injuries in pts who did not receive body CT has been presumed from negative follow up

Patients who received CTscan have been compared with patients who did not receive CTscan for ISS, NISS, probability of death, number of admissions



#### **HIGH ENERGY MECHANISM (YELLOW CODE)** 159 consecutive pts positive negative ER tests CTscan **CTscan not** performed 58 performed 101 pts (36.5%) pts (63.5%) **Torso injury** Torso injury No torso No torso 47 pts (81%) injury 11 pts injury 99 pts 2 pts (2%) (98%) **TN** (19%) **FP** FN TP

Sensitivity 0.95 PPV 0.79 Specificity 0.88 NPV 0.98 Accuracy 0.91 1 pulmonary
contusion AIS 2
1 small hemothorax
AIS 2

| No MDCT                                                                                                                                                                                  |            |             |             |              |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------|--------------|--|
|                                                                                                                                                                                          | ISS*       | NISS*       | Pd Triss*   | Pd<br>ASCOT* |  |
| mean±SD                                                                                                                                                                                  | 8.07±6.7   | 9.20±9.27   | 1.91±4.81   | 1.52±4.41    |  |
| median                                                                                                                                                                                   |            |             |             |              |  |
| <ul> <li>Preliminary ER tests identified more severe patients. 99</li> <li>MDCT have been avoided (62%). Only two minor injuries have been missed without threat for patients</li> </ul> |            |             |             |              |  |
|                                                                                                                                                                                          |            |             |             |              |  |
| mean±SD                                                                                                                                                                                  | 15.39±9.99 | 16.96±10.06 | 3.47±6.67   | 2.47±5.65    |  |
| median<br>(min-max)                                                                                                                                                                      | 13(1-48)   | 17(1-43)    | 1.1(0.3-33) | 0.8(0.3-34)  |  |

\* p<0,001 Mann-Whitney Rank Sum Test

### Altered vital signs (red code)

#### ABC (± D) unstable: Protocol ABC (CT head)



Total body ceMDCT

DAMAGE CONTROL TECHNIQUES: MDCT scan after DCS, angioembolization if persistent bleeding





#### Altered vital signs (RED CODE)



#### Predictors for the Selection of Patients for Abdominal CT After Blunt Trauma

A Proposal for a Diagnostic Algorithm

Jaap Deunk, MD,\* Monique Brink, MD,† Helena M. Dekker, MD,† Digna R. Kool, MD,† Johan G. Blickman, MD, PhD,† Arie B. van Vugt, MD, PhD,‡ and Michael J. Edwards, MD, PhD\*

(Ann Surg 2010;251: 512-520)

TABLE 6. The Predicting Variables and Their Adjusted OR With 95% CI to Predict the Presence of  $\geq 1$  Traumatic Injury on CT, Using Multivariate Logistic Regression Analysis

| Variable                                 | n   | OR   | 95% CI    |
|------------------------------------------|-----|------|-----------|
| Abnormal pelvic CR                       | 146 | 46.8 | 23.7-92.4 |
| FAST-positive                            | 69  | 26.7 | 11.8-60.7 |
| Abnormal lumbar spine CR                 | 69  | 16.2 | 7.89-33.3 |
| Hypotension                              | 59  | 3.81 | 1.73-8.40 |
| Abnormal PE of the lumbar spine          | 151 | 2.53 | 1.49-4.31 |
| Abnormal PE of the abdomen and/or pelvis | 248 | 2.41 | 1.54-3.80 |
| Laboratory BE <-3                        | 350 | 2.39 | 1.57-3.64 |
| Abnormal chest CR                        | 340 | 2.37 | 1.57-3.58 |
| Fracture of the extremities              | 262 | 1.61 | 1.03-2.50 |



# Conclusions.....

1. In unstable patients DCS after ER tests and body CTscan after stabilization (protocol 1)

 AB- body CTscan is useful in stable patients with neurological impairment (protocol 2)

3. Trauma patients in yellow code triage (only high energy mechanism) have an overtriage of 70% or more

4. Overscanning may represent a problem, because of radiation exposure (standard radiology 0.62 mSv vs MDCT 18-24 mSv)

5. A more selective use of body CT in stable trauma patient with normal physical exam, normal lab, normal conventional radiology may be considered (protocol 3)

